
Building A Database Expert
by Marco Cantu and Bob Swart

How many times have you
used the Delphi Database

Form Expert? It is really invalu-
able for starting the development
of a data entry form, or of any
other form related to one or more
database tables. After a while,
however, you might want to
customize it, to have standard
elements in your form by default,
such as a company logo or some
special capability...

Of course, you could add those
capabilities and change the way
the data is presented after the form
has been generated, but you might
end up making the same changes
over and over again. It would be
better to customize the Database
Form Expert to generate the forms
as you want them in the first place.

There is only one problem:
Delphi includes the source code of
other less powerful experts, but no
code for the Database Form Expert.
So, to customize this tool we need
to write it again from scratch! This
is exactly the aim of this article. We
recently made a presentation
together about dynamic database
code and Delphi experts and
invented this common example.

As the aim of this article is to
build a Database Expert, we will
delve into some advanced Delphi
programming topics: class refer-
ences, the Session component,
streaming forms and experts.

An Expert In A Notebook
The first part of the work for the
Database Expert is to build an
application capable of generating
database forms at run-time. The
second part will be to turn the
program into an expert, capable of
generating the source file for a
form.

Both examples are based on a
form having the same structure: a
notebook. Instead of having tabs
connected, the notebook uses
buttons to move from one page to
the next. The button to move
between the pages is usually not

enabled until the current selection
has been completed. For example,
you cannot move to the second
page (showing a list of tables) until
you have selected a database alias
in the first page (see Figure 1).

After these first two pages, the
user can select some of the fields
from the table and then give a
caption to each of the labels corre-
sponding to the fields. Another fea-
ture of this form is that its caption
always displays the name of the
current page of the notebook. This
is obtained with a simple handler
for the OnPageChanged event of the
notebook, containing the line:

Caption := ’DataViewer - ’ +
 NoteBook1.ActivePage;

Using a notebook is a good way to
show different controls on a single
form, depending on the current
status. Notice that the two buttons
used to move back and forth are
replicated in each page (although
it is possible to place a single
button in each page of the form).
The reason for this choice is that
most of the code of the program is
actually executed in the OnClick
event of the Next buttons.

Dynamic Database
Programming
At the beginning, the program
should let a user choose a table
from a database. To be able to
explore the existing databases
dynamically, we have to use the
global Session object, of class
TSession, which is defined in the DB
unit, and handles data access ses-
sions. In short the Session compo-
nent holds a list of databases the
application is connected with (in
the Database array property, see
also the DatabaseCount property),
and can be used to set a password
as well as alter the current data-
base connections at run-time.

It is a useful component when
you want to know BDE configura-
tion information, such as a list of
aliases, and can be used to create a
list of the tables in a database.
Table 1 shows the list of Get...
methods for the Session compo-
nent. Notice that they all have a
TStrings parameter which is used
to pass the information back to the
calling application. For more
details see the Delphi help.

The first call to the Session com-
ponent takes place when the form
is created:

➤ Figure 1

10 The Delphi Magazine Issue 7

procedure TForm1.FormCreate(
 Sender: TObject);
begin
 Session.GetDatabaseNames(
 DatabaseList.Items);
 Notebook1.PageIndex := 0;
end;

We’ve used the Items stringlist as a
parameter of the GetDatabaseNames
method to give the destination
listbox. As an alternative we could
have declared and created a
TStringList object, passed it as a
parameter to the procedure and
then assigned it to the Items prop-
erty of the listbox. The second line
of the method above is a must-have
statement for any notebook based
form: regardless of the last page
you were working on at design
time, the notebook will always
start up on the first page. Once the
user selects an item in the database
listbox, the Next button is enabled:

procedure TForm1.DatabaseListClick(

 Sender: TObject);
begin
 BitBtnNext1.Enabled := True;
end;

This enabling after the selection
approach is used in each page,
although we won’t show it again in
the following discussion. The other
component of this first page is used
to select a filter for the database.
The available filters have been
prepared with local tables in mind,
but you can adapt them to SQL
server databases or simply omit
them. The filters are the strings of
a list associated with a RadioGroup
component, so they might even be
customizable by the user. As you’ll
see in a while, the only thing we’ll
need is the string corresponding to
the selected item, so we’ll use this
RadioGroup exactly as a listbox.

Clicking on the Next button of the
first page, now enabled, retrieves
the list of tables, again using the
Session global object, into a listbox
on the second page (see Listing 1).

After retrieving the strings with
the current database and filter,
GetTableNames is called, again pass-
ing the Items of a listbox as the last
parameter. The result is in Figure 2.
Of course, the page is changed too.

The Fields Definition
Using the Session component we
have been able to reach a specific
database table. Now we need to
know what fields are in this table.
When you open a table, you can
find information about the struc-
ture of the table in the Fields array
property. However, we do not want
to open the table, because this can
take some time. The Table compo-
nent has a less well-known
property, FieldDefs, which stores
the definition of the fields.

This is an object of type
TFieldDefs, in practice an array of
TFieldDef structures, with the fol-
lowing properties: FieldNo, Name,
DataType, FieldClass, Required
and Size. The DataType property
holds the original definition in the
database, the FieldClass indicates
the TFields descendant that will be
added to the Fields array when the
table is opened. You can access
each property of the field definition
objects even if the table is not
open, but you have to call the
Update method of the FieldDefs
property.

To use this approach, we’ve
added a Table component to the
form, and set its DatabaseName and

TableName properties using the se-
lected items from the listboxes on
the first two pages of the notebook.
Then we’ve called the Update
method of the FieldDefs, as you can
see in Listing 2. At this point, we
can scan the FieldDefs list and fill a
new listbox with the field names
and the corresponding class
names for the related TField ob-
ject. You can see the result of this
code in Figure 3.

This third page of the notebook
allows a user to select fields from
the table. Only the selected fields
will be present in the form. The
listbox has the MultiSelect prop-
erty set to True and ExtendedSelect
to False, so that clicking on an item
reverses its current selection
status. There are also buttons to
select all or none of the fields.

What Is A Class Reference?
Now we have to step aside for a
moment and briefly look at what a
class reference is. Maybe you
already know, but most Delphi pro-
grammers are not aware of this fea-
ture of the language. A class
reference is basically a variable
storing a class data type instead of
a value. You can define a new class

procedure GetAliasNames(List: TStrings);

procedure GetDatabaseNames(List: TStrings);

procedure GetDriverNames(List: TStrings);

procedure GetDriverParams(const DriverName: string; List: TStrings);

procedure GetTableNames(const DatabaseName, Pattern: string;
 Extensions, SystemTables: Boolean; List: TStrings);

procedure GetStoredProcNames(const DatabaseName: string;
 List: TStrings);

➤ Table 1: Methods of the Session component
you can use to retrieve database information

procedure TForm1.BitBtnNext1Click(Sender: TObject);
var
 CurrentDB, CurrentFilter: string;
begin
 CurrentDB := DatabaseList.Items [DatabaseList.ItemIndex];
 CurrentFilter := FilterGroup.Items[FilterGroup.ItemIndex];
 Session.GetTableNames(CurrentDB, CurrentFilter,
 True, False, TableList.Items);
 NoteBook1.PageIndex := 1;
 BitBtnNext2.Enabled := False;
end;

➤ Listing 1

12 The Delphi Magazine Issue 7

procedure TForm1.BitBtnNext2Click(Sender: TObject);
var I: Integer;
begin
 {set the properties of a table}
 with Table1 do begin
 DatabaseName := DatabaseList.Items[DatabaseList.ItemIndex];
 TableName := TableList.Items[TableList.ItemIndex];
 {load the fields definition}
 FieldDefs.Update;
 end;
 {clear the list then fill it}
 FieldList.Clear;
 for I := 0 to Table1.FieldDefs.Count - 1 do
 {add number, name, and class name}
 FieldList.Items.Add (Format(’%d) %s [%s]’,
 [Table1.FieldDefs[I].FieldNo, Table1.FieldDefs[I].Name,
 Table1.FieldDefs[I].FieldClass.ClassName]));
 NoteBook1.PageIndex := 2;
 BitBtnNext3.Enabled := False;
end;

➤ Listing 2

reference type, and a variable of
that type, as follows:

type CRef = class of TControl;
var CRef1: CRef;

The CRef1 variable can receive as a
value the TControl class (the class
used in the definition of its type) or
any of its subclasses. From that
point on you can use the class
reference where a data type is
expected. You can use it in a class
comparison, to get the class name,
but also to create a new object of
that class:

Control1 :=
 CRef1.Create(Form1);

This line of code can be used to
create an object of any TControl
subclass, depending on the class
assigned to CRef1. We will do ex-
actly the same to create the data-
aware controls in the form, but
we’ll use class references first to
find a match between TField sub-
classes and the class of a data-
aware control. Notice that the VCL
already defines many class refer-
ences, as TClass (related to the ge-
neric TObject), TComponentClass,
TControlClass and TFieldClass.

From Data Types To Controls
To map the data types of the
database fields to data-aware
components we’ve written some
code based on class references.
The translation function has the
following prototype:

function ConvertClass(
 FieldClass: TFieldClass) :
 TControlClass;

Its code basically scans an array of
class references mapping the two
types and defined as:

type
 CVTable =
 array [1..FieldTypeCount,
 1..2] of TClass;
const
 ConvertTable: CVTable = (...);

You can see the full definition of the
constant array and the conversion
function in Listing 3.

➤ Above: Figure 2

➤ Below: Figure 3

March 1996 The Delphi Magazine 13

The first thing to notice is that
the association, as defined by the
array, is far from perfect. In particu-
lar, deciding that Blob fields should
map to DBImage controls is a guess
reasonable for dBase tables only.
The second thing to notice is that
the conversion function simply
scans the table looking for a match
in the first column. When the
match is found, the value of the
second column is used. The
function has to make some casts
between class references, but the
rest is clear enough.

Editing The Labels
The fourth page of the notebook
displays the field name and the
corresponding control (computed
with the above function) of the
selected fields in the first column
of a string grid (see Figure 4).

The second column displays the
field name again, but you can edit
it, to provide text for the descrip-
tive label that will be placed near
the control. You can see the code
used to fill this StringGrid in Listing
4 (taken from the BitBtnNext3Click
method).

The for loop in this code uses a
second counter (RowNum) for the
current row of the StringGrid. In
fact, if some fields are selected, the
index of the fields will not match
with the rows of the grid.

There is some awkward code in
this listing, too. In particular, to the
result of the ConvertClass function
(a class reference) we apply the
ClassName class method to obtain a
textual description of the class.
Notice that you can only apply a
class reference to class methods,
not standard methods, because no
class instance is associated with a
class reference.

In this fourth page of the note-
book you can customise the labels
and check that the fields and their
controls match properly. We’ve
provided no way to choose a con-
trol class, but this could be a nice
addition to the program. Pressing
the Generate button makes the new
form appear.

Creating The Form
Once you have the class references
to the controls, and the captions of

the labels, you have only to arrange
everything on a form. We’ve al-
ready prepared a standard form,
which is part of the program, with
a toolbar hosting a DBNavigator and
a scrollbox covering the rest of the
client area (and aligned to it). The
new components will be placed in
the scrollbox, so that if there are
too many the scrollbar will refer
only to that portion of the form,
and the toolbar will remain at its
place (and not scroll). Incidentally,
this is the same approach used by
the Delphi Database Form Expert.

The form also has a Table compo-
nent, which is connected at run-
time with the database and table
selected by the user. This is the
first operation done after the form
has been created and is quite sim-
ple. The core of this procedure is
the creation of labels and controls:
see Listing 5.

The code use to create the label
is the typical code used to create
controls at runtime. Notice that the
owner of the control is the form
(this is indicated in the parameter
of the class constructor, Create),
while the Parent of the control is
the ScrollBox, because the label
needs to go inside it. As a caption
of the label the program uses the
value inserted by the user. The
name of the label is based on the
loop counter: its horizontal posi-
tion is fixed and its vertical posi-
tion is increased each time,
computing the height of the last
control and leaving some blank
space (this code is not shown in
the listing).

The second part of the code in
Listing 5 is used to create the
control and is based on the class
reference returned by the conver-
sion function. The Name of this

const ConvertTable: CVTable = (
 (TStringField, TDBEdit),
 (TIntegerField, TDBEdit),
 (TSmallintField, TDBEdit),
 (TWordField, TDBEdit),
 (TFloatField, TDBEdit),
 (TCurrencyField, TDBEdit),
 (TBCDField, TDBEdit),
 (TBooleanField, TDBCheckBox),
 (TDateTimeField, TDBEdit),
 (TDateField, TDBEdit),
 (TTimeField, TDBEdit),
 (TMemoField, TDBMemo),
 (TBlobField, TDBImage), {just a guess}
 (TGraphicField, TDBImage));
function ConvertClass(FieldClass: TFieldClass) : TControlClass;
var
 I: Integer;
 Found: Boolean;
begin
 Found := False;
 for I := 1 to FieldTypeCount do
 if ConvertTable [I, 1] = FieldClass then begin
 ConvertClass := TControlClass (ConvertTable [I, 2]);
 Found := True;
 break; {jump out of for loop}
 end;
 if not Found then
 raise Exception.Create (’Match not found’);
end;

➤ Listing 3

RowNum := 0;
for I := 0 to FieldList.Items.Count - 1 do
 if FieldList.Selected[I] then begin
 StringGrid1.Cells[0, RowNum] := Format (’%d) %s [%s]’,
 [Table1.FieldDefs[I].FieldNo, Table1.FieldDefs[I].Name,
 ConvertClass(Table1.FieldDefs[I].FieldClass).ClassName]);
 StringGrid1.Cells[1, RowNum] := Table1.FieldDefs[I].Name;
 Inc(RowNum);
 end;
StringGrid1.RowCount := RowNum;

➤ Listing 4

14 The Delphi Magazine Issue 7

component is set using the name of
the class of the control plus the
name of the field. The problem
here is that the names of the fields
might include spaces or other
special characters invalid for an
identifier.

To solve this problem we’ve writ-
ten a NormalizeString procedure,
which replaces invalid characters
with underscores. It also calls
Delphi’s IsValidIdent function,
which checks whether a string is a
valid Pascal identifier.

Now we need to set the
DataSource and DataField proper-
ties of the data-aware components.
The problem is that each VCL class
representing a data-aware compo-
nent defines these properties
directly and does not inherit them
from a common ancestor class. So
we have no way to use inheritance,
polymorphism or other language
features to define these properties,
but we have to write a chain of if
statements to consider the various
cases. Here is an example:

if CtrlClass = TDBEdit then
begin
 TDBEdit(NewDBComp).DataSource :=
 NewForm.DataSource1;
 TDBEdit(NewDBComp).DataField :=
 Table1.FieldDefs[I].Name;

You can actually write the cast as:

(NewDBComp as CtrlClass)

but this code returns a TControl
and this class doesn’t define the
data related properties. The exist-
ence of the property is checked at
compile time, so we can’t use a
dynamic data type instead. Unless
we access the published proper-
ties of the object directly, we have
to write some traditional code for
this vital portion of the program.

At the end some more code is
used to set the proper height of the
form, making it as tall as possible
but avoiding making it longer than
the screen. The width, instead, is
increased only where there is a
scrollbar, adding the width of this
last element (returned by the
GetSystemMetrics API call). At the
end the form is displayed to the
user, as you can see in Figure 5.

Expert Advise?
The program so far (on the disk as
DYNAVIEW.DPR) allows you to
create database forms according
to the parameters set in the note-
book pages. This is very good as an
example of a runtime application
using databases, but it lacks the
capability of a development tool.
There is no way to save the struc-
ture of the forms you’ve created.
This is the aim of the remainder of
this article, which will also show
you how to turn this program into
a full-blown Delphi Expert.

Generating Source Code
First of all, we have to make some
modifications in MAINFORM.PAS,
in order to generate a synchro-
nised Object Pascal source file for
the form. Furthermore, we need to
make sure that the form is not

destroyed after it is shown. For
this, we need to make modifica-
tions in the original code partially
shown in Listing 5 for the response
method of the Generate button. One
of the changes is to eliminate the
local variable NewForm and instead
use the global variable ResultForm
to hold the resulting form instance
variable. This is the only way to
ensure that the generated form
instance would be re-usable out-
side the response method for the
Generate button (after all, our
Expert needs to get its hands on it
to add it to the project).

Also, we need to generate the
exact source code that would re-
flect the actual form that was cre-
ated. This source code can be
divided into three parts: the first
part of the unit (unit header and
initial definition of the TResultForm

NewLabel := TLabel.Create(NewForm);
NewLabel.Parent := NewForm.ScrollBox1;
NewLabel.Name := ’Label’ + IntToStr(I);
NewLabel.Caption := StringGrid1.Cells[1, RowNum];
NewLabel.Top := Y;
NewLabel.Left := 10;
NewLabel.Width := 130;
CtrlClass := ConvertClass(Table1.FieldDefs[I].FieldClass);
NewDBComp := CtrlClass.Create(NewForm);
NewDBComp.Parent := NewForm.ScrollBox1;
NewName := CtrlClass.ClassName + Table1.FieldDefs[I].Name;
NormalizeString(NewName);
NewDBComp.Name := NewName;
NewDBComp.Top := Y;
NewDBComp.Left := 150;
NewDbComp.Width := NewForm.ScrollBox1.Width - 160;

➤ Listing 5

➤ Figure 4

March 1996 The Delphi Magazine 15

class), the last part of the unit (the
end of the TResultForm class defini-
tion and the implementation sec-
tion) and in between these two we
have to enter the definitions for all
the components (labels and data-
aware controls) that are also cre-
ated on-the-fly on the result form
itself. Note that we use compiler
directives in the final source code
to make sure the code can be com-
piled for the DynaView application
as well as the MarcoBob Database
Expert. The first part of the unit is
generated as shown in Listing 6 (f
is a variable of type System.Text).

The last part of the unit is gener-
ated as shown in Listing 7 (note
that we don’t do a Show of the
ResultForm any more; all we do is
create it and make it ready to be
used for the expert).

In between these two parts of the
generated unit source code, we
need to make sure that for each
control which was created dynami-
cally a corresponding variable dec-
laration is entered in the source
file. These modification are made
in the original listing (Listing 5) at
two places – see Listing 8.

Saving the Form
So, now we have the source code of
the form itself generated on disk.
But how do we generate a compat-
ible .DFM file? We still have the
resulting form (in the global
ResultForm instance) and if we look
hard enough in the Delphi Help and
VCL source code we find that we
can use the WriteComponentResFile
method to write a class instance to
file, which is exactly what we need.

Form Expert Interface
So far, we’ve focused on the execu-
tion of our Expert. There is more to
an expert than the Execute method,
as we’ve shown in Issue 3 of The
Delphi Magazine. We need to de-
rive our Database Expert (called
TMarcoBobExpert) from the abstract
base class TIExpert and override
every method. The class definition
of TMarcoBobExpert is shown in
Listing 9.

For the implementation section
we first need to override GetStyle
and return esStandard (we could
make it a form expert, but it’s

➤ Figure 5

{$IFDEF EXPERT}
 writeln(f,’ procedure FormClose(Sender: TObject;
 var Action: TCloseAction);’);
 writeln(f,’ private’);
 writeln(f,’ { Private declarations }’);
 writeln(f,’ public’);
 writeln(f,’ { Public declarations }’);
 writeln(f,’ end;’);
 writeln(f);
 writeln(f,’var’);
 writeln(f,’ ResultForm: TResultForm;’);
 writeln(f);
 writeln(f,’implementation’);
 writeln(f);
 writeln(f,’{$R *.DFM}’);
 writeln(f);
 writeln(f,’procedure TResultForm.FormClose(Sender: TObject; ’+
 ’var Action: TCloseAction);’);
 writeln(f,’begin’);
 writeln(f,’ Action := caFree;’);
 writeln(f,’end;’);
 writeln(f);
 writeln(f,’end.’);
 System.Close(f);
 ModalResult := mrOk
{$ELSE}
 ResultForm.Show;
{$ENDIF}
end;

➤ Listing 7

{$IFDEF EXPERT}
 {generate the first part of the unit source}
 System.Assign(f,UnitName+’.PAS’);
 System.Rewrite(f);
 writeln(f,’unit ’,ExtractFileName(UnitName),’;’);
 writeln(f,’interface’);
 writeln(f,’uses’);
 writeln(f,
 ’ SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,’);
 writeln(f,’ Forms, Dialogs, DB, DBTables, DBCtrls, ExtCtrls;’);
 writeln(f);
 writeln(f,’type’);
 writeln(f,’ TResultForm = class(TForm)’);
 writeln(f,’ Panel1: TPanel;’);
 writeln(f,’ DBNavigator1: TDBNavigator;’);
 writeln(f,’ ScrollBox1: TScrollBox;’);
 writeln(f,’ DataSource1: TDataSource;’);
 writeln(f,’ Table1: TTable;’);
{$ENDIF}

➤ Listing 6

16 The Delphi Magazine Issue 7

easier for now to leave it as a
standard Help menu expert). The
GetIDString and GetName always
need to be overridden and return
the name of our Database Expert.
For a standard expert, GetGlyph and
GetComment can return nothing, only
GetMenuText and GetState are
important. These define the text of
the menu item (Marco & Dr.Bob’s
Database Expert) and the state
(just enabled). The source code is
shown in Listing 10.

Execute
We’ve left out one important detail
of the expert so far: the Execute
method. This is the method that, as
the name indicates, gets executed
whenever the expert is activated
from the menu.

So, this is the place where we
start the original application (the
notebook with the four pages to
indicate which alias, table, fields
and label names we want). At the
end of the Execute method, when
the user has clicked on the
Generate button, the source code
for the unit will be generated and
an instance of the corresponding
form will be available in the global
variable ResultForm. Before the
expert gets to that point, however,
it must first get a new unique file-
name for the new unit, a name that
has to be given to the notebook
code somehow, so that the dynami-
cally generated unit source code
can be put in the correct file. For
this, we need to call a function from
ToolServices which is called
GetNewModuleName, which returns a
unique filename for the unit as well
as for the form itself (see the file
MARCOBOB.PAS on the disk for
more details on the Execute
method).

When the Generate button on the
notebook has been pressed and
control returns to the expert we
have a generated source file on
disk and an instance of ResultForm
on our hands. At that time, all the
expert needs to do is to call a func-
tion called CreateModule from the
ToolServices and add the newly
generated form and unit to the pro-
ject. Unfortunately, CreateModule
only works with TIMemoryStreams
and we have a file on disk and an

instance in memory and no stream
whatsoever.

This problem can be solved in
three steps. First, we need to write

the ResultForm instance to a disk
file as well. We need to call
WriteComponentResFile with the
unique form filename as follows:

NewLabel := TLabel.Create(ResultForm);
NewLabel.Parent := ResultForm.ScrollBox1;
NewLabel.Name := ’Label’ + IntToStr(I);
{$IFDEF EXPERT}
 writeln(f,’ Label’,IntToStr(i),’: TLabel;’);
{$ENDIF}
NewLabel.Caption := StringGrid1.Cells[1, RowNum];
NewLabel.Top := Y;
NewLabel.Left := 10;
NewLabel.Width := 130;
CtrlClass := ConvertClass(Table1.FieldDefs[I].FieldClass);
NewDBComp := CtrlClass.Create(ResultForm);
NewDBComp.Parent := ResultForm.ScrollBox1;
NewName := CtrlClass.ClassName + Table1.FieldDefs[I].Name;
NormalizeString (NewName);
NewDBComp.Name := NewName;
{$IFDEF EXPERT}
 writeln(f,’ ’,NewName,’: ’,CtrlClass.ClassName,’;’);
{$ENDIF}

➤ Listing 8

function TMarcoBobExpert.GetStyle: TExpertStyle;
begin
 Result := esStandard
end {GetStyle};
function TMarcoBobExpert.GetIDString: String;
begin
 Result := ’Marco.DrBob.Database.Expert’
end {GetIDString};
function TMarcoBobExpert.GetName: String;
begin
 Result := ’MarcoBob Expert’
end {GetName};
function TMarcoBobExpert.GetGlyph: HBITMAP;
begin
 Result := 0
end {GetGlyph};
function TMarcoBobExpert.GetComment: String;
begin
 Result := ’’
end {GetComment};
function TMarcoBobExpert.GetMenuText: String;
begin
 Result := ’Marco && Dr.Bob’’s Database Expert’
end {GetMenuText};
function TMarcoBobExpert.GetState: TExpertState;
begin
 Result := [esEnabled]
end {GetState};

➤ Listing 10

Type
 TMarcoBobExpert = class(TIExpert)
 public
 { Expert Style }
 function GetStyle: TExpertStyle; override;
 { Expert Strings }
 function GetIDString: string; override;
 function GetName: string; override;
 function GetGlyph: HBITMAP; override;
 function GetComment: string; override;
 function GetMenuText: string; override;
 function GetState: TExpertState; override;
 { Launch the Expert }
 procedure Execute; override;
 end;

➤ Listing 9

March 1996 The Delphi Magazine 17

if (Form1.ShowModal = idOk)
then begin
 WriteComponentResFile(
 FormName, ResultForm);
 ResultForm.Close;
 ResultForm := nil;

After we’ve written the instance of
ResultForm to disk there is no need
to keep it around any longer, so we
should close it (then it will free
itself) and assign the global vari-
able ResultForm to nil.

WriteComponentResFile can be
used to write an instance of a com-
ponent to a binary resource file.
And guess what’s inside a .DFM
file? Indeed, it’s the binary re-
source of a form. This also means
that using ReadComponentResFile
you can read just about any .DFM
file and use it to generate the cor-
responding form on-the-fly (that
should give you some new ideas to
experiment with...).

So, now we have two disk files:
one for the unit source code in a
.PAS file and one for the corre-
sponding form in a .DFM file.

At this point, we could start up
Delphi’s Project Manager and sim-
ply add the unit to the project.
However, we want to automate
things, so we need to do some more
work.

How do we get a file on disk into
a TIMemoryStream? We could think of
only one way: read the file into a
TFileStream, then copy the
TFileStream into a TMemoryStream
and finally use the TMemoryStream to
create a TIMemoryStream (which is
then said to own the stream itself).
This may sound very complex and
inefficient, but it turns out that it
doesn’t really take that much time.
For now, it works and allows us to
get a disk file into a TIMemoryStream
to be used later as an argument to
CreateModule. See Listing 11.

Now, finally, we’re able to call
ToolServices.CreateModule which
will create a new module based on
the name of the unit, the
TIMemoryStream image of the unit
source code, the form binary and
finally some options which specify
that this unit/form is to be added
to the project and that we want to
show the unit as well as the form:

ToolServices.CreateModule(
 UnitName, IUnitStream,
 IFormStream, [cmAddToProject,
 cmShowSource, cmShowForm])

The complete source code for the
Execute function is on the disk.

Installing this new Database
Expert is just like installing a new
component. Just pick Options | In-
stall Component from the menu,
and enter the file MARCOBOB.PAS
(note: you need to have MAIN-
FORM.PAS and MAINFORM.DFM in
the same directory in order to be
able to compile the expert). After
rebuilding COMPLIB.DCL, our ex-
pert will be part of Delphi itself and
can be found on the Help menu.

We can now generate the same
form as before and if we compile
the program, then we get the same
form as can be seen in Figure 5.
However, there is one important
difference: this time, we have also
generated the source code and
.DFM file for the form. We can now
make any changes we want, or
generate a dozen more forms and
add them all to our project. Marco
& Dr.Bob’s Database Expert really
works! The full source code is
included on this month’s disk.

32-bit Version
By the time you read this article,
Delphi 2.0 will probably be just
available. So, you might well won-
der if our expert is compatible with
Delphi 2.0. Will it run on Windows
95? Well, so far it seems that the
promise Borland made about
source compatibility is true: we
managed to get our Database
Expert running in the pre-release

version of Delphi 2.0 without a sin-
gle code modification! And if you
want to change anything in this ex-
pert, then remember that this time
you’ve got full source code!

Acknowledgements
Marco and Dr.Bob’s Database Ex-
pert was the result of a wild “live”
hacking session during the Novem-
ber 1995 Delphi seminar of the UK
Delphi Developers Group (for
details of the group send email to
CompuServe 100016,355) which
started in Manchester – with
‘almost’ success (!) – and ended in
London with a working initial
version. This article is the spin-off
of that great adventure, for which
we want to thank Joanna Pooley
and Phil Goulson from the bottom
of our hearts! We’d love to do it
again someday...

Marco Cantu is the author of
Mastering Delphi, published by
Sybex, and is currently working on
a new edition of the book cover-
ing Delphi 2.0. He lives in Italy,
where he teaches Delphi program-
ming courses, and can be reached
at CompuServe 100273,2610

Bob Swart (email: CompuServe
100434,2072) is co-author of The
Revolutionary Guide to Delphi 2.0,
soon to be published by WROX
Press, columnist for The Delphi
Magazine and professional soft-
ware developer for Bolesian BV in
The Netherlands. In his spare time,
Bob likes to watch video tapes of
Star Trek Voyager with his 2-year
old son Erik Mark Pascal.

{ copy form data to a IMemoryStream }
MemoryStream := TMemoryStream.Create;
FileStream := TFileStream.Create(FormName, fmShareDenyNone);
repeat until MemoryStream.Write(Buffer,FileStream.Read(Buffer,Size)) = 0;
FileStream.Free;
MemoryStream.Position := 0;
IFormStream := TIMemoryStream.Create(MemoryStream);
IFormStream.OwnStream := True;
{ copy unit data to a IMemoryStream }
MemoryStream := TMemoryStream.Create;
FileStream := TFileStream.Create(UnitName, fmShareDenyNone);
repeat until MemoryStream.Write(Buffer,FileStream.Read(Buffer,Size)) = 0;
FileStream.Free;
MemoryStream.Position := 0;
IUnitStream := TIMemoryStream.Create(MemoryStream);
IUnitStream.OwnStream := True;

➤ Listing 11

18 The Delphi Magazine Issue 7

	An Expert in a Notebook
	Dynamic Database Programming
	The Fields Definition
	What is a Class Reference?
	From Data Types to Controls
	Editing the Labels
	Creating the Form
	Expert Advice?
	Generating Source Code
	Saving the Form
	Form Expert Interface
	Execute
	32-bit Version
	Acknowledgements

